Metering System Ultromat® ULFa

Efficient production of a polymer solution with a high throughput capacity.

Extraction rates of up to 8,000 l/h

These systems can be used to process both liquid and powdered polymers. The storage tank, which is sub-divided

into three chambers, largely prevents the carry-over of the freshly batched polymer.

Your benefits

- Processing of liquid polymers (0.05 1.0 %) and powdered polymers (0.05 – 0.5 %)
- Minimal carry-over of product and thus higher-quality results
- Extraction of the polymer solution and drainage of the chambers through the front of the storage tank
- User-managed input of the solvent concentration and calibration of powder feeder unit and liquid concentrate nump
- Gentle mixing of the polymer solution (electric stirrer)
- Pressure sensor for the measurement of the liquid level

Field of application

- Potable water treatment
- Waste water treatment (industry and local authorities)
- Sludge de-watering

Metering System Ultromat® ULFa

Efficient production of a polymer solution with a high throughput capacity.

Technical Data

The following types of polymer can be processed:

- Liquid polymers (0.05 1.0 %)
- Powdered polymers (0.05 0.5%)

Selectable components:

- Tank size/ extraction rate
- Construction (normal or mirror image)
- Electrical connection
- Control S7 1200 (with and without PROFIBUS®/PROFINET/Modbus TCP)
- Powder feeder
- Vibrator for powder feeder (promotes the movement of polymer)
- Powder feeder unit FG205/ top hopper (for filling and feeding the powder feeder)
- Liquid concentrate pumps in the Sigma, Spectra, DULCO®flex ranges
- Monitor for liquid concentrate pump (float switch / flow monitor)
- Flush valve (Y-flush inlet or wetting cone)
- Stirrer for 3rd chamber
- Language (pre-set language for the control panel)

The standard scope of delivery includes among other things:

- Pause function/ operating message/ empty running function
- Monitoring of the re-dilution unit
- Lifting lugs for transport

Discharge volume	l/h	400	1,000	2,000	4,000	6,000	8,000
Tank volume	1	400	1,000	2,000	4,000	6,000	8,000
Diluent water max.	l/h	600	1,500	3,000	6,000	9,000	12,000
Water pressure	bar	3-5	3 – 5	3-5	3 – 5	3-5	3-5
Powdered polymer	kg/h	0.5–11	0.5–11	0.8–18	3.6–55	3.6–55	4.8–110
Length	mm	1,999	2,643	3,292	3,301	4,120	4,605
Width	mm	918	1,002	1,186	1,456	1,651	1,910
Height	mm	1,390	1,740	1,890	2,182	2,182	2,290
Water connection	п	1	1	1	1 1/2	1 1/2	2
Discharge nozzle DN		25	25	32	40	40	50
Concentrate feed DN	mm	15	15	15	20	20	20
Voltage / frequency	V/Hz	400/50 460/60	400/50 460/60	400/50 460/60	400/50 460/60	400/50 460/60	400/50 460/60
Power uptake	kW	1.5	2.6	3.2	5.0	5.0	9.5